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We report the transformation of a linear electro-optically tunable non-phase-matched second-order nonlinear
process into a cascaded second-order nonlinear process in a bulk KTP crystal to generate the effect of electro-
optically tunable Kerr-type nonlinearity. By applying an electric field on the x–y plane, parallel to the z-axis of
the crystal, phase mismatch is created, which introduces a nonlinear phase shift between the launched and
reconverted fundamental waves from the generated second harmonic wave. Due to the nonuniform radial
intensity distribution of a Gaussian beam, a curvature will be introduced into the fundamental wavefront, which
focuses or defocuses the incident beam while propagating through the crystal.
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Cascaded second-order nonlinearity has been investigated
in various crystals so far by applying different methods; it
has vital applications in self-focusing and self-defocusing[1],
spatial solitons[2], all-optical switching, mode locking, tran-
sistor action[3], high-speed optical shutters[4], electro-optical
detection[5], electro-optic switching[6], etc. In cascaded
second-order nonlinearity (χð2Þ:χð2Þ), as the name suggests,
one second-order nonlinear process is followed by another
second-order nonlinear process in a phase-mismatch condi-
tion, which introduces a phase shift between the launched
fundamental wave (FW) and reconverted FW from the
generated second harmonic wave (SHW). Depending on
the phase mismatch, the FW focuses or defocuses within
the crystal with cascaded nonlinearity, similar to Kerr
media having χð3Þ nonlinearity. A large equivalent effective
third-order nonlinearity (χð3Þ nonlinearity) larger than the
natural third-order nonlinearity[1,7] can be obtained by cas-
caded second-order nonlinearities[8] and is applicable for
mode locking of solid-state lasers for CW operations,
known as cascaded second-order mode locking (CSM)[9].
KTP is an excellent nonlinear optical crystal which is

widely used in cascaded second-order nonlinear applica-
tions[10]. Due to its high nonlinear coefficient and higher
optical damage threshold[11], KTP is effectively used in
second harmonic generation (SHG)[12] for intracavity
high-power laser generation compared to other crystals[13].
Besides its higher second-order nonlinearity, it also has
high indirect third-order nonlinearity[1] which can be
developed by the cascaded nonlinearity. Earlier, indirect
third-order nonlinearity was studied by different meth-
ods[1,14], where reflection losses take place in the cavity.
But electro-optically tunable indirect third-order nonlin-
earity has not been reported until now, where less voltage
is required to create the required phase mismatch (Δk), as
compared to other crystals, as the electro-optic coefficients
of bulk KTP are high[15]. Iliev et al.[16] reported a temper-
ature-tuned cascaded χð2Þ lens mode-locking technique at

the non-phase-matched condition for SHG, where Kerr
lens mode-locking was investigated by putting a lens near
the PPKTP crystal within the cavity. In this technique,
the focusing and defocusing of the Kerr lens are controlled
by controlling the focal length of the lens, which is very
crucial to adjust.

In this work, a phase-mismatch (Δk) condition is intro-
duced into a bulk KTP crystal by applying a DC electric
field on the x–y plane of the crystal to analyze the cas-
caded χð2Þ nonlinearity. The application of a direct electric
field on a bulk KTP crystal has not yet been reported until
now. The Δk introduces a nonlinear phase shift (ΔϕNL)
within the launched FW and regenerated FW from the
generated SHW while propagating through the crystal.
Thus, this Δk can be controlled by the applied electric
field, and the sign of the nonlinear phase shift can easily
be changed by changing the polarity of the applied electric
field. Hence, focusing or defocusing of the FWs depends on
the sign of Δk, where the FWs focus for the positive values
of Δk and defocus for the negative values of Δk. The most
significant advantage of this method is that the value of
the effective nonlinear refractive index (neff

2 ) can be rap-
idly changed compared with other methods, such that
the value of Δk is tuned by changing the incident angle
in an angle tuning method.

When an external DC electric field is applied in the
z (axis) direction of a bulk KTP crystal, the refractive
indices (RIs) of the crystal change, and due to Pockels
effect, the index ellipsoid of the crystal can also be modi-
fied as[17]

½ð1∕n02
x Þ þ r13Ez �x2 þ ½ð1∕n02

y Þ þ r23Ez �y2
þ ½ð1∕n02

z Þ þ r33Ez �z2 ¼ 1; (1)

where n0
x , n0

x , and n0
z are the modified RIs of the bulk KTP

along the principal axes after applying the DC electric
field (Ez), and
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n0
x ¼ nx ½1− 1∕ð2n2

xr13EzÞ�;
n0
y ¼ ny1− ½1∕ð2n2

yr23EzÞ�;
n0
z ¼ nz ½1− 1∕ð2n2

z r33EzÞ�; (2)

where nx , ny, and nz are the RIs through the x, y, and z
principal axes before applying any electric field, respec-
tively. r13, r23, and r33 are the electro-optic coefficients
of the crystal[17].
In a noncentrosymmetric biaxial crystal, the coupled

amplitude equations for propagating waves along the
type II phase-matching direction can be derived from
Maxwell’s equations for the generation of SHW as

dE1∕dy ¼ ðiωχð2Þðω; 2ω:− ωÞE�
2E3e−iΔkyÞ∕2n1c; (3)

dE2∕dy ¼ ðiωχð2Þðω; 2ω:− ωÞE�
1E3e−iΔkyÞ∕2n2c; (4)

dE3∕dy ¼ ð2iωχð2Þð2ω;ω:ωÞE1E2eiΔkyÞ∕2n3c; (5)

where ω is the fundamental frequency, c is the speed of
light, and χð2Þ is second-order nonlinear susceptibility[18].
E1 and E2 are the electric fields of the incident FWs,
and E3 is the electric field of the generated SHW. n1

and n2 are the RIs of the incident FWs, and n3 is the
RI of the generated SHW. But when waves having these
amplitudes are propagating along the bulk KTP, making
an angle (θ, ϕ) with the principal axis, then the modified
RIs of the FWs and SHG after applying electric field to the
crystal can be calculated by[19]

n0ðωiÞ ¼ ½2∕f−Bi � ðBi − 4CiÞ1∕2g�1∕2; (6)

where ‘+’ is chosen for i ¼ 2, 3 and ‘−’ for i ¼ 1 for
type II phase matching. Both Bi and Ci are the functions
of θ (polar angle) and ϕ (azimuthal angle), which depend
on the modified RIs[19] after the applied electric field.
Hence, the phase-matching factor (Δk) along the propa-
gating distance (L) can be calculated as

ΔkL ¼ Lðk1 þ k2 − k3Þ ¼ ð2πL∕λÞðn0
ω1 þ n0

ω2 − n0
ω3Þ;

(7)

where n0
ω1 and n0

ω2 are the modified RIs of the incident
FWs, and n0

ω3 is the modified RI of the generated SHW
after applying the electric field to the crystal. k1 and k2
are the wave vectors of the incident FWs. k3 is the wave
vector of the generated SHW. Equation (7) describes that
Δk depends on the electric field applied to the crystal, as
the RIs of the crystal vary due to the Pockels effect
(Eq. (1)). However, the amplitude equation can be found
by solving Eq. (3) with modified refractive index as,

dE1∕dy ¼ ðiAE�
2E3e−iΔkyÞ∕n0

ω1; (8)

where A ¼ Γ
�����������������������
n0
ω1n

0
ω2n

0
ω3

p ½ð2I oÞ∕ðcεoÞ�1∕2. From Eq. (8),
the amplitude equation can be further solved as

E1 ¼ E0e−iðΔk∕2Þy½cosðsyÞ þ iΔk sinðsyÞ∕ð2sÞ�; (9)

where s ¼
���������������������������������
ðΔk∕2Þ2 þ Γ2Ω

p
, and Γ is the nonlinear

coupling coefficient, expressed as

Γ ¼ ½ðωdeffÞ∕ðc
�����������������������
n0
ω1n

0
ω2n

0
ω3

q
Þ�½ð2I oÞ∕ðcεoÞ�1∕2; (10)

where εo is the permittivity of free space, and deff
is an effective d coefficient, assumed as deff ¼
ðχð2Þð2ω; 2ω;ωÞÞ∕2 and χð2Þð2ω;ω;ωÞ ¼ χð2Þðω; 2ω;−ωÞ ¼
χð2Þðω; 2ω;−ωÞ. In Eq. (9), Ω is a constant parameter,
expressed as

Ω ¼ fð4I 1∕I 0Þ− ðI∕I 0Þg: (11)

In Eq. (11), I ¼ I 1 þ I 2 is the total peak intensity. I 1
and I 2 are the equal peak intensities of incident FWs
for type II phase matching. I 0 is the normalized intensity,
and Δk ¼ ðk1 þ k2 − k3Þ. From Eq. (9), the phase im-
pressed onto the fundamental beam at the exit surface
(y ¼ L) of the crystal can be understood clearly as

ΔϕNL ¼ ΔKL
2

− tan−1

�
Δk
2s

tanðsLÞ
�
: (12)

For a large phase mismatch or low intensity, we have
jΔkj ≫ jΓΩj. This nonlinear phase shift varies linearly
with the intensity of the incident FW, similar to the
optical Kerr effect[1]. Assuming i2 ¼ −1, Eq. (12) can be
solved as

ΔϕNL ≅ −½ðΓ2L2Þ∕ΔkL�Ω: (13)

At unit intensity, Eq. (13) can be solved as

ΔϕNL ≅ −½ðΓ2L2Þ∕ΔkL� ¼ ð2πLneff
2 I oÞ∕λ; (14)

where λ is a propagating wavelength. neff
2 is assumed to be

neff
2 ¼ −

4π
cε0

×
L
λ
×

d2eff
n0
ω1n

0
ω2n

0
ω3

×
1

ΔkL
: (15)

From Eq. (15), it is clearly seen that neff
2 is proportional

to ½ðd2effÞ∕ðn0
ω1n

0
ω2n

0
ω3Þ�, which can be compared to χð2Þ

materials as

neff
2 ≅ d2eff∕n

3: (16)

The incident intensities of the FWs are assumed to be
uniform. So the solved equation for both the FWs will be
same and the same amount of phase will be imprinted on
them. As the propagating wave is a Gaussian beam, the
radial intensity distribution of the beam is not uniform,
which will introduce a curvature to the FWs. The cas-
caded χð2Þ process will act as a focusing–defocusing lens
within the crystal having an intensity-dependent focal
length, where the focal length of that lens can be tuned
by tuning the applied electric field to the crystal during
propagation through the medium. This focal length can
be calculated by
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f ¼ a2∕ð4Ineff
2 LÞ; (17)

where a is the beam radius[20]. Thus, as in an optical Kerr
medium, the FWs focus or defocus while propagating
through a crystal having cascaded nonlinearity, depend-
ing on the sign of Δk (Δk ¼ k1 þ k2 − k3). The FWs focus
for the positive values of the phase mismatch, i.e., Δk > 0,
and defocus for the negative values of the phase mismatch,
i.e., Δk < 0[2]. The main difference between cascaded and
Kerr lenses is the origin of the phase shift. In the Kerr
medium, the presence of neff

2 is responsible for the change
in phase and focusing or defocusing of the FWs, while in
cascaded nonlinearity, the presence of phase mismatch
between the SHW and FW is also responsible for the non-
linear phase change of the FWs and the focusing or defo-
cusing of the beam. For a beam with a lower intensity and
a diffraction length more than the crystal length, the focal
length of the cascaded Kerr lens can be approximated by
Eq. (17). The relation of the focal length of the lens and
the phase can be given by solving Eqs. (14) and (17) and
can be used to find the focal length of the cascaded lens as

f ¼ ða2πÞ∕ð2ΔϕNLλÞ: (18)

Thus, from Eq. (18), it is clearly seen that the focal
length of the cascaded lens is dependent on ΔϕNL for
low-intensity FWs.
The dimension of the KTP crystal is assumed to be

10 mm × 5 mm× 4 mm, as shown in Fig. 1. The RIs of
the crystal along the principal axes are considered for
the FWs as nx1 ¼ 1.73788, ny1 ¼ 1.74547, and nz1 ¼
1.82983 and for the SHW as nx2¼1.77806, ny2¼1.78887,
and nz2¼1.88885[21]. Superscripts 1 and 2 denote FW
and SHW, respectively. x, y, and z are the principal axes
of the KTP crystal. The electro-optic coefficients of the
KTP crystal are r13 ¼ 9.5 × 10−12 pm∕V, r23 ¼ 15.7×
10−12 pm∕V, and r33 ¼ 36.3 × 10−12 pm∕V[15].
The FWs of the incident beam are propagated along the

type II phase-matching direction of the crystal, making
angles of θ ¼ 24.534° and ϕ ¼ 90° when there is no applied
voltage to the crystal. The beam waist is assumed to be
80 μm, for a total intensity of 0.4 GW∕cm2. Hence, the
diffraction length of the beam must be greater than the
crystal length of the fundamental beam waist of 80 μm.

The direction of propagation of FWs of 1064 nm for
type II critical phase matching is on x–y plane of the bulk
KTP crystal at room temperature (30°C). When a c
alculated DC electric field of ∓2 kV∕mm is applied to
the bulk KTP crystal, the index ellipsoid and the principal
RIs of the crystal will be modified, and the phase-
mismatch condition will occur within the propagating
FWs in the type II phase-matching direction. This applied
electric field along crystal’s thickness of 4 mm can be con-
verted to applied voltage by the equation of V ¼ Ez × t
i.e. 8 kV, where t is the thickness of the crystal, V is
the applied voltage, and Ez denotes the applied electric
field. By tuning the applied voltage to the crystal, Δk
can also be tuned along the propagation length (L), as
shown in Fig. 2. The maximum ΔkL is calculated as
7.86 radians for an applied voltage of �8 kV.

From Fig. 2, it is seen thatΔkL and its sign can easily be
changed by changing the strength and polarity of the
applied voltage, which is important in cascaded nonline-
arity for self-focusing and defocusing FWs.

When a beam interacts with a nonlinear crystal, it does
not focus, as there is no phase shift in the FWs of the
incident beam. After several repetitions of upconversion
(FW to SH) and downconversion (SH to FW), the
required nonlinear phase shift is attained by the FWs.
For focusing a beam, sufficient nonlinear phase shifts of
the FWs are required inside the crystal. These nonlinear
phase shifts propagating along the type II phase-matching
direction inside the crystal after applying voltage can be
calculated numerically, as shown in Fig. 3.

Figure 3 shows the variations of the nonlinear phase
shifts of the FWs with respect to (w.r.t.) the propagation
distance according to different applied voltages at two dif-
ferent peak intensities. At zero applied voltage, ΔϕNL is
zero along the propagation distance, as shown by sky-blue
solid line in Figs. 3(a) and 3(b) at both intensities viz. 0.2
and 0.035 GW∕cm2, respectively. When the applied volt-
age changes (namely 2, 5, or 7 kV), ΔϕNL of the FWs also
changes at different intensities, as shown by green, pink,
and blue solid lines in Fig. 3. Here, it is seen that the
variation of ΔϕNL at 0.2 GW∕cm2 is higher than at
0.035 GW∕cm2. Hence we can say that at higher intensity,

Fig. 1. Application of electric field along the z-axis, and the
propagation of FW along the x–y plane of the KTP crystal. Fig. 2. Change of ΔkL with respect to the applied voltage.
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ΔϕNL will be greater. The increase in the interaction of the
unconverted and reconverted FWs may introduce a much
higher nonlinear ΔϕNL within the FWs, which can be con-
trolled by controlling the applied voltage. However, ΔϕNL

and neff
2 , due to ΔkL, can also be controlled by controlling

the voltage applied to the crystal, as shown in Fig. 4.
In Fig. 4, it is clearly seen that, at zero applied voltage,

ΔϕNL and neff
2 are also zero. By tuning the applied voltage

from 0 to�8 kV,ΔϕNL and neff
2 can also be controlled from

the minimum to the maximum level, as shown by regions
A (0 to −8 kV) and B (0 to 8 kV) in Fig. 4, which describe

the focusing and defocusing conditions of the incident
beam, respectively. The maximum ΔϕNL calculated to
be 1.44 radians. The maximum neff

2 due to ΔϕNL is
calculated to be 6.9872 × 10−13 cm2∕W, which is one
order higher than the other methods reported to date.
The focusing–defocusing of the FWs by applying voltage
helps to design a tunable lens within the crystal, whereas
the focal length of the lens depends on ΔϕNL and neff

2 ,
which can also be controlled by controlling ΔkL, as shown
in Fig. 5.

Figure 5 shows the changes of ΔϕNL and neff
2 with the

change of ΔkL, where the regions around C (negative val-
ues of ΔkL) and D (positive values of ΔkL) are responsible
for focusing and defocusing the beam, respectively, which
introduces the behavior of a lens within the crystal. From
Fig. 5, it is clearly understood that whenΔkL is zero,ΔϕNL

and neff
2 are also zero. By changing ΔkL, it is possible to

tune ΔϕNL and neff
2 , as shown in Fig. 5. Thus, the focal

length of this lens is dependent on ΔϕNL and neff
2 , which

can be tuned by controlling the applied voltage, as shown
in Fig. 6.

Figure 6 shows the variation of the focal length of the
cascaded Kerr lens with the varying applied voltages,
where the regions around E (0 to −8 kV) and F (0 to
8 kV) are showing the condition of positive and negative
lenses, respectively. At zero applied voltage, the focal
length of the cascaded Kerr lens is zero. By tuning the

Fig. 3. Nonlinear phase of the FW along the propagation length
for (a) 0.2 and (b) 0.035 GW∕cm2.

Fig. 4. Change of ΔϕNL and neff
2 w.r.t. the applied voltage.

Fig. 5. Change of ΔϕNL and neff
2 w.r.t. the ΔkL.

Fig. 6. Change of the focal length of the cascaded Kerr lens w.r.t.
the applied voltage.
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applied voltage from 0 to �8 kV, maximum tuning of the
focal length for positive and negative lenses is calculated.
The minimum and maximum focal lengths are calculated
as �3.68 and �4.57 nm for an applied voltages of �0.3
and �2.5 kV, respectively.
In conclusion, we analytically demonstrate an electro-

optically tunable cascaded Kerr lens in a bulk KTP crys-
tal. A voltage of �8 kV is calculated to apply on an x–y
plane of a 1 cm long crystal having a thickness of 4 mm to
create a ΔkL of ∓7.86 radians, which transforms the sec-
ond-order nonlinearity into cascaded nonlinearity. The
sign of this ΔkL can be easily changed by changing the
polarity of the voltage applied to the crystal. ΔϕNL due
to ΔkL within the propagating FWs creates the cascaded
nonlinearity, analogous to Kerr nonlinearity. An analogy
has been made by comparing ΔϕNL within FWs, resulting
in a comparison of cascaded nonlinearity with Kerr non-
linearity. The value of ΔϕNL, responsible for the focusing
and defocusing effects in cascaded Kerr-like nonlinearity
achieved through the cascaded process, can be calculated
numerically. The values of ΔϕNL and neff

2 can be varied by
varying the voltage applied to the crystal. The nonuni-
form radial distribution of the incident Gaussian beam
curves the fundamental wavefront, which focuses and de-
focuses while propagating through the crystal. Depending
on the polarity of the applied voltage, the medium acts as
a positive or negative lens having an intensity-dependent
focal length. The minimum calculated focal length of the
positive lens is 3.68 mm for an applied voltage of 0.3 kV for
a peak beam intensity of 0.4 GW∕cm2 having a beam
waist 80 μm in a bulk KTP crystal. The maximum value
of neff

2 is achieved at �6.9872 × 10−13 cm2∕W.
The benefit of this method is that the bulk KTP itself

behaves like a configurable lens, which is much easier to
control by tuning the electric field applied to the crystal.
Therefore, controlling the focal length the cascaded Kerr
lens will be more accurate when the cavity loss is less and
mode locking is easier. Hence, this method can be applied
to Kerr-lens mode locking of the laser cavity for the
generation of picosecond pulses by controlling the focal
length of an electro-optically tunable cascaded Kerr lens.
Furthermore, in electro-optic tuning, no losses occur
within the cavity, as there is no requirement for an extra
setup and no change in the incident angle of the

fundamental beam. Unlike angle tuning, there is no scope
of misalignment, as the crystal acts as a configurable lens
of the required focal length. For the adaptive optical
requirement, this method can also be utilized to compen-
sate for the effect of thermal lensing of the gain medium at
a high pump power level.
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